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A simple procedure to obtain complete, closed expressions for Lie algebra 
invariants is presented. The invariants are ultimately polynomials in the group 
parameters. The construction of finite group elements requires the use of 
projectors, whose coefficients are invariant polynomials. The detailed general 
forms of these projectors are given. Closed expressions for finite Lorentz 
transformations, both homogeneous and inhomogeneous, as well as for Galilei 
transformations, are found as examples. 

1. I N T R O D U C T I O N  

Our objective here is twofold: first, to describe a general method to 
obtain in a simple way complete expressions for the elements of  general Lie 
groups; second, to present a treatment leading to complete, closed expressions 
for the Lie algebra invariants of  matrix groups. In these times of increasing 
algebraic computing resources, it is always interesting to have such formulas 
as inputs for applications. Besides their obvious interest by themselves, the 
detailed forms of the invariants serve as a powerful checking control in the 
rather messy calculations leading to the expressions for finite transformations. 
These expressions, of  course, are of  interest by themselves. Even if particular 
cases (such as a rotation around the fixed axis Oz or a boost in the x - t  

plane for the Lorentz group) are enough for most purposes, only the general 
expressions show the complete interplay between the different components 
at work in a transformation. The procedure to get at them provide, furthermore, 
good illustrations for the results on the invariants. The two things help each 
other, and are better presented together. 
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The transformation parameters (rotation angles, boost rapidities, transla- 
tions in time and space) are the components of the generic member of the 
Lie algebra written in a matrix basis formed by the generators. A finite 
transformation is a group element, the exponential of the algebra member. 
General expressions for group elements can in principle be obtained by simple 
order-by-order exponentiation, but for large matrices the identification of the 
successive powers can become very difficult. However, if we use the well- 
known definition of function of a matrix, only a few powers are necessary 
even in the general case. 

The closed expressions for the Lie algebra invariants, scalar and opera- 
torial, are presented in Section 2. Though not quite necessary to arrive at the 
final exponentials for the group elements, they are interesting for checking 
purposes and become more and more useful as the matrix dimensions grow. 
The treatment involving the characteristic polynomial and symmetric func- 
tions of its roots sheds light on many aspects of the question. In the later 
sections we illustrate the approach with the general expressions for Lorentz 
and Poincar6 transformations. The method is particularly simple when all 
the roots (the matrix eigenvalues) are simple. The presence of multiple roots, 
as is the case for the Galilei group, requires a special treatment. 

In Section 3 we present the general method for obtaining the group 
elements. We called it the "Z-method," since it uses the "eigenprojectors" 
Zj = Ihj)(hjl of a finite matrix A with eigenvalues {hi}. 

In Section 4 we present an example of invariants which are very 
important in gauge theories: the closed differential forms describing the 
characteristic classes of fiber bundles on even-dimensional differentiable 
manifolds. 

The general expression for a homogeneous Lorentz transformation is 
obtained in Section 5, and that for an inhomogeneous transformation in 
Section 6. For these examples we can use a simple version of the Z-method, 
which supposes all the eigenvalues to be distinct. The generic member of 
the Lie algebra of the Galilei group has a multiple eigenvalue, so that the 
procedure would not work. In Section 7 we show, however, how to obtain 
it from a more general theory. 

The Appendix presents some results on symmetric functions which are 
largely used in Sections 2 and 4. 

2. LIE ALGEBRA INVARIANTS 

We start by recalling some well-known definitions. The characteristic 
polynomial (in the complex variable h) of a matrix A is the determinant 
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A(h) = det[M - A] (2.1) 

The roots of  A(h), solutions of the secular equation 

A(h) = (h - h~)(h - hE)(h - h a ) . . .  (h - hN) = 0 (2.2) 

constitute the spectrum of A, the set Sp A = {hi, h2, h3 . . . . .  hN} of  complex 
numbers for which the resolvent, or characteristic matrix [hi-A], is not 
invertible. 

We are interested in matrices A belonging to a Lie algebra. Clearly the 
trace of A is an invariant under the similarity transformation A'  = g -1 Ag,  
a s  tr(g-1 Ag) = tr(gg-1 A) = tr A. The trace of any power of A will be 
invariant, as 

tr A 'k = t r ( g - l A g g - l A g g - l A g . . ,  g - l A g )  = tr(g- lAkg)  = tr A k 

The characteristic polynomial is an invariant because, once written in the 
canonical form 

N 
A(h) = E hN-j~j[ A] ( 2 . 3 )  

j=0 

each coefficient tpj[A] is an invariant. These coefficients are invariant because 
they can be written in terms of  powers of  the above traces of powers of  A. 
In order to see it, we need their detailed form, which involves Bell polynomi- 
als. Let us recall briefly what such polynomials are. 

Given a formal series of the form g(t) = XT= l (gJ j ! ) t  j, the corresponding 
Bell polynomials are defined by 

Bnk(gl, g2 . . . . .  gn-k+l) = ~.; [g(t)] k ( 2 . 4 )  
t=0 

They are multivariable polynomials in the Taylor coefficients gi. Their detailed 
expression is rather involved (Comtet, 1974), but they appear in the multinom- 
ial theorem, 

1 g j  ~ t ~ 

k~ -f( tj = j = l  = n.t Bnk(gl' g2 . . . . .  gn-k+l) (2.5) 

which provides the easiest way to obtain most of  their properties. We use 
the alternative notations Bnk[g] = Bnk(gb g2 . . . . .  g,-k+l) = Bnk{g,}, the 
expression inside the latter bracket being the typical argument. By convention 
we put Bj0 = 8j0. The matrices B[g] = (B,k[g]) have many important properties 
(Aldrovandi and Monte Lima, 1980, 1983), but we shall only state those of 
interest to our particular case. A property of consequence in what follows is 

Bnk(agl, a2g2 . . . . .  a"-k+lgn-k+O = B,,k{aJgj} = a"B,,k{gj} (2.6) 
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for a constant a. It comes from a simple change of variable t ---) at in the 
multinomial theorem. In particular, when a is only a sign, a = -1 ,  

B,k{(--)Ygj } = (--)"B,k{gj } (2.7) 

Texts on combinatorics in general call the summation 

1 N 
N-~. ~ BN,,[g] (2.8) 

m=O 

the "complete Bell polynomial" of g(x). We shall obtain the Lie algebra 
invariants precisely as complete Bell polynomials. The relation of the charac- 
teristic polynomial to the invariants is contained in the general formula 

N z j h N - j  j 
det[M + zA] = ~ j---~-. ~ Bym{(-)k-~(k - 1)! tr(Ak)} (2.9) 

j = 0  m=0  

which is obtained by using 

ln(l + x )  = ~ (-)/- .  ix  j 
j=~ J 

in the formal identity det[M + zA] = exp[tr{ln[M + zA]}] and then 
expanding. From this formula we recognize the coefficients of the characteris- 
tic polynomial (2.3) as 

q)j[A] ( j l ) j  j -- m~=O njm{(-)k-l(k -- 1)! tr(Ak)} (2.10) 

These complete Bell polynomials contain only powers of traces of powers 
of A and are clearly invariant. A particularly beautiful relation comes out 
when we put k = 0, z = 1 in (2.9): 

1 N 
detA =~.~ ~] B N m { ( - ) k - ~ ( k -  1)! tr(Ak)} (2.11) 

m=O 

In the present case, this states the well-known fact that the zeroth-order 
coefficient of the characteristic polynomial of A is just the determinant of A. 

Take now for the matrix a generic member 

A = {.OaJa (2.12) 

of a Lie algebra of a Lie group with generators J~, a = 1, 2 . . . . .  N. The 
~o ~ are the transformation parameters. A group element will be of the form 
g = exp[A]. The group acts on A by the adjoint N • N representation, that 
is, by similarity transformations: A --~ A '  = g-~ Ag. As the characteristic 
polynomial does not change under these transformations, it is an example of 
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an invariant polynomial on a Lie algebra. Summing up, A(h) is a polynomial 
in the variable h whose coefficients are functions %(o)) = q~j[A] of the 
parameters, which are themselves Bell polynomials in the traces of  powers 
of A. The rank of  the Lie algebra is the number of  coefficients q~j(o)) which 
are functionally independent, that is, the rank of  the matrix (a~/OoJi). Some 
examples of these invariant polynomials are 

,~0(o)) = 1 

q~l(to) = - t r  A 

1 
tp2(to ) = ~ [ - t r A 2  + (trA) 2] 

1 I 1 
tP3(t~ = --3 tr A 3 + 2 (tr A)(tr A 2) _ 6 (tr A) 3 

1 1 1 1 2) 
~4(0)) = --~ El" A 4 _~_ 3 (tr A)(tr A 3) + ~ (tr A 2)2 _ 4 (tr A)2(tr A 

2~ (tr A) 4 + 

. . ~ 

q~N(to) = (--)Ndet A (2.13) 

These relations lead to the introduction of multilinear objects which are 
invariant symmetric tensors, such as 

1 
.q(O) = 1; "q(~') = - t r  Ja; .q(2) = __~ [ t r ( J a J b  ) _ tr(Ja) tr(/b) ] 

1 3 1 
"q(aab)~ = - -3  [tr( JaJbJc) - "~ (tr Ja)(tr JaJc) + ~ tr(Ja) tr(Jb) tr(Jc)] 

The general expression is 

( -  1) ~ 
ala2""an n! B , , m { ( - ) k - l ( k  - 1)! t r (Ja lJa2 .  . .  Jak)} (2.14) 

m=0 

These tensors provide invariant objects by contraction, 

T = T a la2  . . . . .  ,n(n)  (2.15) 
�9 la l a 2 . . . a n  

and the invariant Casimir operators in the enveloping algebra: 

C ( n )  = ,n(n)  j a l j a 2  . . .  J a n  (2.16) 
�9 lala2...a n 
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The best known of these tensors is the Killing form ~/ab. It is usually 
defined, for the case in which tr Ja = 0 for all the generators, as ~/ab = 
-- 1/2 trJaJ b and leads to the Casimir operator 'YabJaJ b. It plays a fundamental 
role in the classification of Lie groups (Goldberg, 1962). For semisimple 
groups, "~ab is a metric (that is, a symmetric nondegenerate bilinear form), 
the Killing-Cartan metric. This form will be of definite sign for compact 
groups, nondefinite for noncompact groups, and degenerate for nonsemisim- 
pie groups. 

Of course, a function ofinvariants is also an invariant, and it is sometimes 
convenient to choose another set. Those given above are, however, because 
of their simple origin, the basic ones. The results may seem rather trivial 
when a diagonalized matrix is considered, but formulas (2.13) are independent 
of  matrix basis. Some deep consequences can be found, related to the detailed 
algebraic structure of the Lie algebra. For example, a semisimple algebra is 
the direct product of simple subalgebras and its characteristic polynomial is 
always of the form A(h) = IIk Ak(k), where the Ak are the characteristic 
polynomials of the simple subalgebras. 

Orthogonal or pseudo-orthogonal groups are usually introduced as 
groups of real transformations which preserve a real bilinear nonsingular 
form "q. If g is a group element, this means that g r.qg = .q, where g r is the 
transposed matrix. If g = exp[A], with A a member of the group Lie algebra, 
then this implies A r = _.qA.q- 1 and the traces of the odd powers of A vanish. 
Actually, the odd coefficients in the characteristic polynomial (that is, the 
odd-order invariants) vanish. The argument is the following. Take z -- - 1 
in (2.9), 

N (_)jXN-j 
d e t [ M -  a] = ~ j! Bjm{(-)k-~(k - 1)! tr(Ak)} (2.17) 

j=0 m=0 

The determinant for the transposed matrix must be the same: det[M-A] = 
det [h/ -Ar] .  As A r = - -qAx1-1, a sign factor (_)k appears in the arguments 
of the Bell polynomials: 

Bjm{(-)t ' - l(k-l)!  t r [ (Ar)k]} = Bjm{(-)k(-)k-l(k--1)! tr(Ak)} 

= ( - ) i  B jm{( - )k - l (k -  1)! tr(Ak)} 

by (2.7). Consequently, we have also 

det[M - A] = ~ hN-J j=o ~ m=0 Bjm{(-)k-t(k - 1)! tr(Ak)} 

Comparison with (2.17) shows that the coefficients must vanish for odd 
values of j: q~2p.t(to) = 0. The invariants of (2.13) reduce to simpler forms, like 
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q0o(CO) = 1; q)l(CO) = O; 
1 

q~2(o~) = - ~  trA 2; q~3(to) = 0 

1 1 
q04(0J ) = - - ~  t rA  4 + 8 ( t rA2)2 ;  . . .  (2.18) 

For unitary groups written in terms of Hermitian generators, A r = A*, the 
only conclusion is that the invariants are real, %(co)* = %(co). The extra 
condition det[g = exp [iA]] = 1 for special unitary groups leads, of  course, 
to t r A =  0. 

The rank of the Lie algebra being the number of  independent invariants, 
the higher the rank, the more multilinear forms there will be. The Lorentz 
and the Poincar6 groups are of  rank 2 and have bilinear and quadrilinear 
forms. Another rank 2 case is the group SU(3) of  special unitary 3 x 3 matrices, 
which has a bilinear and a trilinear invariant. Let us use this group to illustrate 
some of the above results. In terms of  parameters ot = {O~k, k = 1, 2 . . . . .  
8}, and using the Gell-Mann basis {Tk} for the algebra (Lee, 1981), the group 
element is 

g [a]  = exp[ioLkTkl2] (2.19) 

The generic algebra element will be 

/or 3 + 3-n/2ot8 oq - icx 2 0[. 4 - -  iot s 

W = OtkT k = / a l  + ia2 --a3 + 3-1/2a8 a6 -- ia7 / (2.20) 
\ OL 4 + ia5 O~ 6 + iot 7 --2 • 3-1/20%] 

With the notation oq2 = ot 1 + ia2, 0t45 = ot4 + ias, 0t67 = a 6  + iOtT, 0t38 = 
a 3 -I- 3 -1/2 ot 8 a n d  0 t '38  = ot 3 - 3 -1/2 ors, w e  o b t a i n  

[ 1~,,21 = + l a , , :  + (~,,,)~ ~,*:,~, + 2 x 3 - , , ~ , * : , ,  ~,,*~r + ~,,*:,,* ,~ 
W 2 = [0t450~7 + 2 X 3-1/20t12~8 [ot1212 -I- I0t6712 q- (ot~8) 2 ~12~ - ~176 / 

\ Ot12OL67 -]- ~50s ~20L45 -- Ot67Ot38 1~45 ]2 + I0t6712 + 4et213/ 

(2.21) 

AS tr W = 0, we expect the characteristic polynomial A(h) = h3q~o + k2q~l 
+ hq~2 + % to have q~o = 1, q~l = 0, q~2 -- - (1 /2 )  trW 2, q~3 = - d e t  W = 
- (1/3) trW 3. We find indeed from (2.20) that the polynomial has the form 

~k W 2  m ( h )  = h 3 Jr- hq~ 2 -]- ~03 = ~k 3 - ~ t r  - d e t  W (2.22) 

a result which can also be obtained by taking in (2.3) the coefficients (2.13). 
Applying the secular equation to the matrix, W 3 - 1/2 W trW 2 - I det W 
= 0, and taking the trace, we find immediately that trW 3 = 3 det W, a 
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particular example of (2.1 1). We can, of course, obtain W 3 directly and check. 
It will be simpler in our case to use W 3 = -(hp3 + Wcp2). The first invariant 
is that related to the Cartan metric on the 8-dimensional SU(3) manifold, 

1 2 8 
(~2 = - - 2  t r W  : - ~ ol. 2 = --~]ijotiol,j ( 2 . 2 3 )  

i=1 

with ~/u = ~0 chosen conventionally as positive and Einstein summation 
notation adopted in the last expression. The corresponding Casimir invariant 
is the operator C (2) = -Es=~ T2. The other invariant is not so simple, as it 
relates to a trilinear form "qUk defined through 

1 1 s 
q~3 = - 3  trW3 = 3 ~ 

i ,j ,k=l 

8 

(~iOLjOLk t r (T i  T j  Tk) = - 
i , j ,k=l 

"l~ijkOtiOLjOLk 

(2.24) 

corresponding to the Casimir C t3) s = - Y'ij, k=~ "qijkTiTjTk. The  components 
"qqk Can be picked up from the explicit expression of  det W, 

"[l ij k (2L i Ot j O~ k 

= 2(Ot lOt40t  6 + OLEOt5(3t6 - -  Ot2Ot4OL 7 -I" OLIOt5(3t7) -Jr (2t3(g24 -Jr" OtaCt 2 - -  Ot3Ot 2 

- -  OL3Ct 2 "}- 3-1/212(Ct 2 + a~ 2 + Ot]) -- Ct42 -- Ct~ -- a26 -- Or72 -- 2a~/a]as 

(2.25) 

3. FUNCTIONS OF MATRICES AND T H E  Z - M E T H O D  

Let us begin by saying a few words on functions of matrices in general 
(Gantmacher, 1990). Suppose a complex function F(h)  is given which can 
be expanded as a power series F(h)  = Ek~=O Ck(h -- ho) k on some convergence 
disk Ih - h01 < r. Then the function F(A), now with the matrix A in the 
argument, is defined as the matrix F(A)  = Ek~o ck(A -- h0) k and is meaningful 
whenever the eigenvalues of A lie within the convergence circle. In particular, 
the exponential is always well defined. 

Given an N • N matrix A of eigenvalues hi, )k2 . . . . .  )kN, the set of 
eigenprojectors {Zj[A] = Ihj)(hjl } constitutes a basis, in which A is written as 

N 

A = ~ hjZj[A] (3.1) 
j = l  
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Then the function F(A)  can be equivalently defined as the matrix 

N 

F(A) = Z F(Xj)ZflAJ 
j = l  

(3.2) 

In particular, we shall be looking for 

N 

e A = ~ eXJZj[A] ( 3 . 3 )  
j = l  

The Zj have remarkable properties. Besides being projectors (that is, 
idempotents, Z~ = Zy), they can be normalized so that tr(Zj) = 1 for each j 
(for a general idempotent Z, trZ = rank Z is the dimension of  the subspace 
into which it projects). They are then orthogonal by the trace, t r (Z iZ j )  : ~ij. 
The necessary results tr[F(A)] = ~Y=I F(hj), tr[AkZj] = (hi) k, etc., follow 
immediately. I fA is a normal matrix diagonalized by a matrix U, UAU -~ = 

Adiagonat, the entries of Zk are (Zk)rs = UA1U~, (fixed "k"). Finding U is 
equivalent to finding the projectors. For an N • N matrix, a limited number 
of powers is enough to determine the basis {Zj[A]}: writing (3.2) for the 
power functions F(A)  = A o = I, A 1, A 2 . . . . .  A N- 1, we have 

N N N 

I = ~ Zj; a = ~ hjZj; a 2 = ~ V Z j ; . . .  
j=l j=l j=l 

N N 
a k = ~ h~Zj; . . . ;  AN-1  = Z hJN'-lZJ 

j=l j=l 
(3.4) 

For k -> N, the A k are no longer independent. Inversion of  the above expres- 
sions leads to the closed forms 

Zj[A] 
(A - ~ . I ) (A - -  L2). . . (A - Lj-I)(A - } k j + l ) . . . ( A  - -  h N - I ) ( A  - -  XN) 

(~.j -- ~.l)(~.j --  X2) . . . (X  j --  Xj_ l ) (h.  j --  X j+ I ) . . . (~ .  j --  XN_I)(~. j -- XN ) 

(3.5) 

This is, of course, a polynomial in A, with coefficients dependent on the 
eigenvalues. Here all the eigenvalues must be distinct. Equation (3.2) becomes 

F(A)  = ~ F(hj) (3.6) 

This expression is equivalent to an elegant equation, stating the vanishing 
of a formal determinant: 
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F(A) F(ht) 
I 1 
A h~ 
A z h2 
A 3 h 3 

AN-I ~N-1 

Thus, in order to obtain 

F(h2) F()t3) 
1 1 

h2 h3 
X] 
X] 

xN-1 xN-I 

... F(XN) 

. . .  1 

�9 .. hN 
~ ~ 2  

... X3N 
~ 

. .~ 

... hN N-1 

= 0  

j hj eXJ 

it is necessary to find (i) the eigenvalues of A and (ii) the detailed form of 
the first (N - 1) powers of A. What we have done is to start from a basis 
{A k} for the functions of A, and go to the projector basis. Actually, any set 
of independent polynomials in A could be used as the starting basis. Their 
use can be necessary to avoid the above determinant vanishing identically. 
Thus, once we know the projectors, we can use them as the basis polynomials 
in A and the above determinant becomes 

I 
F(A) F(k,) F(h2) ... F(hN)[ 

Z2[A] 0 1 . . . .  0 

zNia  0 o iii 

which is clearly the same as (3.2). 

(3.8) 

To obtain the closed expressions of the projectors in terms of powers 
of A and the invafiants, we need some results on symmetric functions, of 
which a brief account is given in the Appendix. The expression (3.5) is 
actually the ratio of two generating functions of the so-called elementary 
symmetric functions of the "alphabet" {hi, )k2, ~k 3 . . . . .  hN} with one missing 
letter. The detailed calculation is also shown in the Appendix and gives each 
projector (3.5) in terms of the invariants (2.13): 

k 

N ~ k~-kq~N-J[ al  
Zi[A] = ~ j=0 A k (3.9) 

k=O 2 h"~q~N-j[Al 
n=O j=0 
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The reader may have qualms about the case where some root ho = 0. 
The good rule is to perform first the computation of the projectors with the 
symbols hk, without putting in the values, and then multiply numerator and 
denominator by det A = I Ik  hk. This procedure will dispose of any problem 
with eventual vanishing eigenvalues. The closed expressions (3.9) are more 
useful for larger matrices. For small ones they can, however, be used to check 
the results obtained by direct computation. We have found them very useful 
while checking the calculations presented below with the Mathematica TM 

software system. 
When the matrix A is a member of a Lie algebra, we have a curious 

problem, touching Galois theory. As we saw in Section 2, the coeffi- 
cients of the characteristic polynomial of a matrix A are written in terms 
of invariant polynomials and the roots hi. Suppose we are able to solve 
the characteristic polynomial. This means that we can write the hi in 
terms of the polynomial coefficients, that is, of the invariants. In this 
case, the coefficient of each A k in (3.9) is an invariant. Notice, however, 
our basic assumption: we should be able to solve the polynomial. Fortu- 
nately, this will be the case for the Lie algebras of groups of physical 
interest examined in the following. This is not the case in general for 
N - - 5 .  

In plain sight expressions like (3.5) become undefined when two or 
more eigenvalues coincide. This formulation works only for nondegenerate 
matrices. The method will consequently only apply for Lie algebras whose 
generic elements have no degenerate eigenvalues. This happens for the 
SU(3), Lorentz, and Poincar6 cases, but not for the Galilei generic algebra 
element. 

The general expressions in the presence of degenerate eigenvalues 
are rather involved. We shall only present a mnemonic rule, referring the 
more interested reader to a complete reference (Gantmacher, 1990). For 
that it is better to look back at (3.7). Suppose that the eigenvalues are 
degenerate: that n~ of the roots are equal to h~, n2 of the roots are 
hnt+l and so on. The determinant becomes, of course, identically null, 
and the equation gives no real information. We have to correct it. The 
rule is then the following: (i) the first column remains as it is; (ii) the 
second, headed by F(hl), also; (iii) the next (hi - 1) columns are replaced 
by the successive derivatives of order 1, 2 . . . . .  (nl - 1) of F(h0; (iv) 
then comes the column headed by F(hni+0; (v) the next (n2 - 1) col- 
umns are the derivatives of that column, up to that headed by 
F(n~+n2-1)(hn~+l); and so on for all the columns. Notice that we first derive 
the formal expressions and only after put in the exact values of the roots. 
The general aspect of the formal determinantal equation becomes 
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F ( A )  F ( h O  

I 1 

A k~ 

A 2 k~ 

A 3 k3j 

F ' ( k t )  . . .  F < " ' - I ) ( k l )  F(h2)  .. .  F~"2-1~(h2) .. .  F ( h D  ...  F fn"- I ) (h . )  

1 . . .  1 1 . . .  1 . . .  1 . . .  1 

1 . . .  0 h2 .. .  0 . . .  h .  . . . . . .  

2x. ... x~ . . . . . . . . .  x~ . . . . . .  
3h~ . . .  h i  . . . . . . . . .  h i  . . . . . .  

x~ -~ (N - l )x~  -2 

- - - 0  

(3.10) 

We shall illustrate it later with the Galilei group. Also here it may happen 
that, for a certain choice of the monomials in the first column, the determinant 
vanishes identically. In this case, we must replace the monomials by another 
collection (eventually of polynomials), in order to have a nontrivial equation. 

4. CHARACTERISTIC CLASSES 

Perhaps the most beautiful examples of the invariants described above 
are the differential forms describing the characteristic classes of fiber bundles 
on even-dimensional differentiable manifolds (Kobayashi and Nomizu, 1963). 
These eminently mathematical objects are of great interest in gauge theories 
and have received a lot of attention from physicists (Eguchi et al., 1980; 
Zumino, 1985). We shall only consider briefly their formal aspects, and 
confine ourselves to Chern classes. There are actually two interrelated kinds 
of classes going under Chern's name: the Chern classes proper and the 
Chern characters (Nakahara, 1990). We shall find easily the closed, complete 
expressions of their interrelations. Consider the complex linear group GL(N, 
C) of all invertible N • N matrices with complex entries and let A be an 
element of its Lie algebra G'L(N, C). To conform to current mathematical 
notation it is enough to take formula (2.9) with z = i/(2~), so that now the 
invariant polynomial functions are 

( i )  k l  k 
q~[A] = ~ ~ ~ B ~ { ( - ) r - ~ ( r -  1)! tr(A')} (4.1) 

m=0 

Given a complex vector bundle E over a manifold M with typical fiber C N 
and associated to a principal bundle P, the kth Chern class ck(E) will be 
characterized by a closed differential form ck of degree 2k on M. This form 
is that (unique) form whose pullback is q~k(F), where F = dF + F ^ F is 
the curvature of a connection F on P. After they are found, the cohomology 
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classes represented by the Ck are shown to be independent of F and, conse- 
quently, related to the more basic, topological features of the bundle. If -rr: 
P --+ M is the bundle projection and "tr* the corresponding pullback, then 

i k k 

'rr*(ck) = q~k(F) = (2"rr)kk! m=0 ~ Bk"{( - - ) r - l ( r -  1)! tr[(F)q} = {rk[iFI2"rr] 

(4.2) 

the symmetric function of the alphabet whose letters are the eigenvalues of 
the matrix (iFI2~r). Then, 

c0(E) = 1 

i 
cl(E) = ~ trF 

A,rr  

1 
c2(E) = ~ [trF 2 - (trF) 2] 

/ 1 ] 
C3(E) = 8,tr 3 ~ (trF)(trF 2) - ~ (trF) 3 

, ~  

cu(E) = ~ d e t F  (4.3) 

Notice that here N is the fiber dimension. These relations are simple adapta- 
tions of (2.13). For orthogonal groups, the first invariants reduce to the simpler 
forms of (2.18), 

1 2. 
c0(E) = 1; cl(E) = 0; c2(E) = ~ trF , c3(E) = 0 

c 4 ( E )  = - 4 trF4 + ~ ( t r F 2 ) 2 ;  " ' "  (4.4) 

Handling matrices of forms in general requires some attention, because 
the noncommutativity of forms is added to that of matrices. Here only 2- 
forms appear, which are commutative. Of course, the higher order classes 
are of limited physical interest, as products of forms vanish when the resulting 
degree surpasses the space dimension. On 4-dimensional spacetime, only 
invariant polynomials up to q)4 are nonvanishing. 
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The Chern total character is defined as 

ch(E) = tr exp ~ F = ~=o (2~-)kk! trFk = k=o ~.. sk[iFI2~] (4.5) 

where the Sk are the power-symmetric functions defined in Appendix A, with 
the additional conventions S k>N[iFI2"rr] = 0 and So[iFI2~] = N. The 
summand 

i t 1 
Chk(E) - (2,tr)kk-------.; trF k = ~. sk[iFI2"tr] (4.6) 

is the kth Chern character. The relations between classes and characters are, 
for j, k >-- 0, mere reflections of (A.6) and (A.7): 

1 j 
ci(E) = f i  m=0 ~ Bjm{(--)k-l(k -- 1)! k! Chk(E)} (4.7) 

(_  1)k-i k 
k! ch,(E) - ~-~: -i~ j~o (-Y-~(J  - 1)! Bkylr! cr(E) } (4.8) 

Our concern here is simply to exhibit these closed expressions for the relation- 
ships. We have only considered the complex linear groups. The interested 
reader will find in the quoted references details on Pontryagin classes g2k(F) 
= (--)k)~k(F), Euler classes, etc. 

The relations (4.3) are, as said, simple adaptations of (2.13) and lead 
to the introduction of multilinear objects like (2.14), which are invariant 
tensors and allow us to obtain more general invariants. The usual Lagrangian 
density for gauge fields, for example, is the invariant trF/~ = "YabFa~ b, where 
~/~, is the Killing form and F is the dual of F in Minkowski space. The 
corresponding Chern class, c2(E), would be a "topological Lagrangian den- 
sity." Current gauge theories use groups for which trF = 0, so that only the 
term in trF 2 appears in the Lagrangian. A gauge theory for the linear group 
GL(4, R), for example, could have (Aldrovandi and Stedile, 1984) an extra 
term in (trF)(trP). 

We now apply the Z-method to some cases of special importance. We 
shall, as a rule, use anti-Hermitian generators in what follows. 

5. L O R E N T Z  TRANSFORMATIONS 

The Lorentz generators can be taken as the 4 • 4 matrices J~l~ with 
entries (J~)v8 = ~q~v'ql~ - ~q~v~q~, with or, 13, ~/, ~ = O, 1, 2, 3 and where 
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"q = d i a g ( 1 , - 1 , - 1 , - 1 )  is the Lorentz metric, responsible for  the lowering 
and raising of  indices in all the formulas below. They  will satisfy 

[j,~a, jvs]  = .qaVj~s + .q~Sjav _ .qa~j,~v _ .q~-yja8 (5.1) 

A general algebra element  will be 

1 
A = ~ (.to~d "~ (5.2) 

The double-index notation (with Einstein convention) we are adopting avoids 
the use o f  too large matrices and the numerical factor accounts for  double- 
counting. The parameters (.to~ will be the rotation group angles (.1) = (tol, toz, 
co3), with toij = s tok and (with 1~ = v/c, 13 = 1131) the imaginary angles tooi 

~y, actually the boost  rapidities collected in the vector  ~ = (~l, ~2, ~3) : 

~ tanh-l[13] = v/Ivl tanh-l[Iv/cl] .  The algebra element becomes 

[ o 
1 0 --(.0 3 0) 2 

A = | _ ~ 2  (.1)3 0 -(.1)1 

\ __~3 __(.1)2 to l  0 

(5.3) 

We shall use also the notations (.1) = Io~1 and g = Igl. Notice that our  matrix 
row and column indices run from 0 to 3. We find immediately detA = [o)-g] 2. 
The characteristic polynomial ,  

de t [h l  - A] = h a -1- [(.i) 2 - ~2]~k2 - [ t o - ~ ]  2 (5.4) 

shows that the two basic invariants are q02 = (.1) 2 - ~2 and ~04 : [OJ '~ ]  2. For  
practical reasons we shall in what follows use 

f l  = (.1)2 - ~2; f2 = to '~ (5.5) 

By the Cayley-Hami l ton  theorem, (5.4) says that A 4 is not independent:  
A 4 = [~2 _ (.1)2] A 2 + [to.~]2. Consequently, all the higher powers o f  A are 
written in terms of  I, A, A 2, and A 3. As trA = trA 3 = 0, we find f rom 
(2.17) that 

de t (h l  - A) = h 4 -h2 /2 !  trA 2 + 1/4! {3(trA2) 2 - 3! trA 4} 

and from (2.1 1) that the last coefficient is related to det A:  

det A = 1/4! {3(trA2) 2 - 3! trA 4} 

It will be convenient  to introduce the two invariant expressions 

U = [ - f f l 2  + (f~1/4 + f~z)m] m 

v = I-f,/2 - (f /4 + 

(5.6) 

(5.7) 
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They will turn up as the angles, real or imaginary,  parametr iz ing the finite 
transformations.  The values V = 0 and U = [ will represent  a pure boost;  
U = 0 and V = ito, a pure rotation. The  four  roots o f  the secular equation 
are found to be  hi, 2 = + U  and h3, 4 = q-V. 

The finite t ransformation will be 

A(to, 1~) = e A = eX'Zl + eX2Z2 + eX3Z3 + eX4Z4 

= (Z 1 + Z2) cosh U + (Zl - Z2) sinh U 

+ (Z3 + Z4) cosh V + (Z3 - Z4) sinh V (5.8) 

The projectors (3.5) become  

Zl (A + U)(A 2 - V2). (A  - U) (A 2 - V 2) 
= 2 U ( U  2 - V 2) ", Z 2--- 2 U ( U  2 - V 2) 

(A + V)(A 2 - U 2) (A - V)(A 2 - U 2) 

Z 3 --- 2 V ( V  2 - U 2) ' 24 --~ 2 V ( V  2 - U 2) 

It is then a matter  o f  s imple substitution to arrive at 

1 
A(to, ~) = UV(U 2 _ V2 ) {[A2UV - I U V  3] cosh  U + [A3V - AV 3] sinh U 

+ [ A U  3 - A3U] sinh V + [ I U 3 V  - A x u v ]  cosh V} (5.9) 

We have delayed the presentation of  the necessary  powers  of  A. Their  
computat ion is easier if  we start by writ ing the entries in (5.3) as 

Aab = -- [~aO~bi ~i "~ ~ai (~bO~i "F ~bj~ukO~k) ] (5.10)  

with a, b . . . .  = 0, 1, 2, 3 and i, j, k = 1, 2, 3. This  kind of  notation is 
extremely convenient  for  explicit calculations. Fur thermore,  to get compact  
forms, it will be necessary to introduce a few objects: the vectors 

Q = t o •  

C = (0) 2 - ~2)to + (~.m)~ = f i r e  + f2~ 

D = (to 2 - /~2)~ _ (l~.to)m = f ,~  - f 2 t o  

X ----- V2~ + (~'o.~)oJ = V2~ + f21all 

u = U2~ + @to)to  = U2~ + f~to 

W = V 2 e o - f 2 ~  

Z = u E t o - f 2 ~  (5.11) 



lnvariants and Finite Transformations 3037 

and the bilinear 

L,~ = [i[j + toitoj - ~ijto 2 (5.12) 

The powers of A will then have the entries 

A2ab = ~aO~bO~ 2 + ~aO~biQi + ~ai~bjLij -- ~ai~boQi (5.13) 

A3ab = ~aO~biD i dr ~ai~boOi dr ~ai~bj~ijkCk (5.14) 

We check immediately that trA 3 = 0, as expected, and find also trA 2 = 
2(~ 2 - to 2) and trA 4 = 4[00.~] 2 dr 2(~ 2 -- r 2. The entries of (5.9) are then 

1 
A(to, [)ab = (eA)ab ~- U V ( U  2 _ V2 ) {Iab[U 3V cOSh V -  U V  3 cosh U] 

+ Aob[U 3 sinh V - V 3 sinh U] 

+ A2ab[UV cosh U -  UV cosh V] 

+ Aa3b [V sinh U - U sinh V]} (5.15) 

The result of substituting the powers is 

{~ 2 _ V 2 U 2 _ ~2 V}  
(eA)ab = ~a0~b0 U--2__V2 cosh U + U2 _ V2 cosh 

Xi sinh V Y/ sinh U 
+SaO~bi U 2 - - V 2  V U s -  V 2 U 

~/2 : V 2 (cosh V - cosh U) 

Xi sinh V Y~ sinh U 
+ ~ai~bO "U 2 - -  V 2 V U 2 - V 2 U 

Qi } 
+ U2 V----------- ~ (cosh V - cosh U) 

L i j  - 
"at- ~ai~bj t U2 -- V2 cosh  U b~--...:- - ~  cosh  V 

[ Wk s inhV Zk sinh U]}  
dr Eijk U 2 ~ V 2 V U 2 - V 2 U (5.16) 
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The general Lorentz transformation will thus have the matrix form 

A(to, [) = e A = 1 
U 2 - V 2 

([2 _ V2)coshU s inhV s i n h U  
+ (V 2 _ ~2)coshV Xj ~ - E "- '-if '-  

- QI(coshV - c o s h U )  

s inhV s i n h U  (coshU - coshV)Li i  
X~ ~ - Y~ U - V~coshU + U2coshV 

+ Q,(coshV - coshU) 

X s inhV s i n h U  
2 v - r~ -- f f  

+ Q2(coshV - c o s h U )  

s inhV s i n h U  
x3-7" - ~3 v 

+ Q3(coshV - c o s h O )  

(coshU - coshV)Li2 

/ s i n h U  sinhV'~ - ~---y- - ---r ~c, 

- (VsinhV - UsinhU)tos 

(coshU - coshV)Ll3 

[ s i n h U  sinhV~ 

+ t-o-  - --r ~ 
+ (VsinhV - UsinhU)orz 

X s inhV s i n h U  s inhV s i n h U  
2--- 7 -  - r 2 - -  d -  x 3 - - V - - -  v, u 

- Q2(eoshV - c o s h U )  - Q3(coshV - c o s h U )  

( c o s h U  - coshV)Ll~  ( c o s h U  - coshV)Lis  

+ ( ~  _ s i n h V \  

+ (VsinhV - Us inhU)(o  3 - (Vs inhV - UsinhU)or~ 

( c o s h U  - coshV)L~a ( c o s h U  - s inhV)Lza 

[ s i n h U  sinhV'~ - V~o~hU + U~o~hV + ~ _ - - C - F  "~r 

% l 

+ ( V s i n h V -  Us inhU) to l  

(coshU - coshV)Lzs (coshU - coshV)L~ 3 

- (VsinhV - U s i n h U ) o  h 

(5.17) 

We should be attentive to the limit cases, as the simple version of  the method 
given here could fail if some eigenvalues become identical. It is enough to 
be careful. In the limit toward the identity, we find that for U and V small, 
the terms behave as they should: the diagonal terms as Ajl ---> 1 + g2/2; 
A22 --> 1 + (Lll -- co2)/2; the off diagonal terms as Al2 ---> (Ql/2 - ~l); etc. 
We find just pure rotation for  ~ = 0, and the usual expression (Jackson, 
1975) for a general pure boost when to = 0. 

6.  P O I N C A R I ~  T R A N S F O R M A T I O N S  

The inhomogeneous Lorentz transformation will have much in common 
with the homogeneous Lorentz case, but also some significant differences, 
stemming mainly from an extra (vanishing) root in the characteristic polyno- 
mial. In terms of the rotation to, boost rapidities 4, space translation parameters 
a = (ah a2, a3), and time translation parameter ao, the basic algebra element 
will be 

--~t 0 --to3 co2 al 

A = -~2 to3 0 -to1 a2 (6.1) 

3 - - 0 ) 2  OJ1  0 

0 0 0 

The characteristic polynomial will have two vanishing coefficients and 
can be conveniently written in the form 

}kS + flk3 _ f2 k = 0 (6.2) 
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which should be compared to (5.4). The two invariants are j] = co2 _ ~2 and 
f2 = co �9 ~, the same as for the Lorentz case. Of  the roots, four are also the 
same, just those of (5.6), (5.7): 

h~ = - k 2  = U = [ - f i l E  + (f~/4 + f~2)1/211/2 

h3 = - h 4  = V = [ - f l / 2  - (f{l/4 +f2)l/Z]l/2 (6.3) 

There is, however, an extra root, 

h0 = 0 (6.4) 

In terms of the eigenprojectors, the general group element will be 

g = eOZo + eVZl + e-VZ2 + eVZ3 + e-VZ4 

-- Z0 + sinh U(Z1 - Z2) + cosh U(23 + 23) 

+ sinh V(23 - Z4) + cosh V(Z  3 + Z4) (6.5) 

Taking into account the relationship between the roots and choosing conve- 
nient denominators, the projectors become 

A 4 - A 2 ( U  2 + V 2) 
Z o = I +  U2V 2 

A4V 2 + A 3 U V  2 - A2V 4 _ A U V  4 

Z 1 = 2 U 2 V 2 (  U -- V 2) 

A4V 2 - A 3 U V  2 - A2V 4 + A U V  4 

Z 2 = 2 U 2 V 2 ( U 2  - V 2) 

- A 4 U  2 + A 2 U  4 - A 3 U 2 V  + A U 4 V  

2 3 = 2 U 2 V 2 ( U 2  - V 2) 

- A 4 U  2 + A 2 U  4 + A a u 2 v -  A u g v  

24 ~" 2 U 2 V 2 ( U 2 -  V 2) 

In terms of  powers of A, the general group element will be 

g = l +  
A 4 - A 2 ( U  2 + V 2) 

U 2 V  2 

1 {A3 ~ A V  2 A 4 - A 2 V  2 
+ U 2  - V2 -- sinh U -Jr- U2 c o s h U  

+ AU2 - A 3 A2U 2 - A 4 
V sinh V + V2 cosh v j  (6.6) 
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with entries 

1 
gab = I a b  + (U 2 - V 2 ) U 2 V  2 {[ U4V sinh V -  UV4sinh U]Aab  

+ [U4cosh V - V4cosh U - (U 4 - V4)]A2b 

+ [UV2sinh U - U2V sinh V]A3b 

+ [(U 4 - V 2) + V 2 cosh U - U 2 cosh V]A~4b} (6.7) 

We now need detailed expressions of the powers of A. The entries in 
(6.1) are 

Aab = --~aO~bi~i -- ~ai(~bO~i "a t- ~bjlE(jkOJk) "4- ~O~b4aO + 8ai~b4ai (6.8) 

with now a, b . . . .  = 0, 1, 2, 3, 4 and i, j, k, = 1, 2, 3. Using (5.11)-(5.12) 
plus the vectors 

P =  t o •  

K = -to2a + ( a .  to)to + ( a .  ~)~ - aoQ 

M = a •  (6.9) 

the powers of A will have the matrix elements 

A 2b = ~aO~bO~ 2 + ~ao~biQi - ~aO~b4~ ~ a + ~ai~bjLij "4- ~ai~b4Pi -- ~ai~boQi 

A3b = ~aO~biDi -- ~aO~b4~ �9 P + ~ai~b~i + ~ai~b4Ki + ~ai~bjE.ijkCk 

A~ = - ~ a O ~ "  D - ~aO~biflQi + ~a0~b4a " D + ~ai~b4M i 

+ ~ai~boflQi + ~ai~bj[~qf~2 -- f lLq] (6.10) 

In matrix form, they are 

( ~~a Ol Q2 Q3 / --a-~ 

- Q l  Lll L12 Ll3 PI 
A 2 = - Q2 LIE /,22 /-123 P2 ; 

3 L13 L23 L33 e 3 ]  0 0 0 

Dl 0 C3 -C2 Kl 
A 3 =  D2 -(73 0 C1 K2 

C2 - C l  0 K3 
0 0 0 0 

(6.11) 



Invariants and Finite Transformations 3041 

A 4 =  

a-D 

I f l Q l  f 2 2 - - f l g l l  --fl LI2 - f l  L13 ml  

I flQ: -f, -Ate3 M2 
~ f l Q 3  - f l  L13 - f l  L23 f 2 2 - f ~ L 3 3  

0 0 0 

It is easily checked that, as expected from (2.18), trA 2 = - 2 f l  and trA 4 = 
2 ( u 4 v  2) = + 4f14. 

Computation of  the generic Poincar6 group matrix element now can be 
made from (6.7). Direct calculation yields the rather awkward general form. 
We can, however, use identities such as U 2 + V 2 = - f l  and U 2 V  2 = 

-f~2, as well as the definitions of  the various vectors, to get simpler expres- 
sions. We find identities like ( U  2 + V2)~ 2 -1- ~ ' D  - U 2 V  2 = 0", V2~  + D 

= - y ; u 2 ~ +  D = - X ; V 2 m -  C = W - f l t o ; C -  U2m = f l t o -  Z; 
etc. There are many different, though equivalent expressions for the entries. 
One of the simplest is the following: 

~ b  = ~ 

1 
+ (U 2 _ V 2 ) U 2 V  2 {~a0~b0[(~ 2 -- V 2 ) U 2 V  2 cosh U - (~2 _ U2)U2V 2 cosh V] 

+ 8aOSbi[XiU2V sinh V - YiUV 2 sinh U + U2V2Qi(cosh U - cosh V)] 

+ ~aiSbo[XiuEv sinh V - YiUV 2 sinh U - U 2 V E Q i ( c o s h  U - c o s h  V)]  

+ ~ai~b4[(Ki -- V 2 a i ) U V  2 sinh U + (UEai - K i ) U E V  sinh V 

+ (U2pi  - M i ) U  2 cosh  V 

- (V2pi - Mi)V 2 cosh U + (U 2 - V2)(Mi +f lPi )]  

+ ~aO~b4[(U2do + ~ " p ) U 2 V  sinh V - (V2a0 + [ �9 P)UV 2 sinh U 

+ a ~ ( X U  2 cosh V - YV 2 cosh U - f 2 ( U  2 - v E ) t o ) ]  

+ 8a,8bjt(V2Lo. + 8~f2)V 2 cosh U - (V2Lu + 5uf2~)U 2 cosh V 

-- EijkZkUV 2 sinh U + Is sinh V] } (6.12) 

The entries in common are exactly those in (5.16). Here we arrive at a 
limitation of the method. Proceeding as described, we do obtain the generic 
group element as the exponential of  the generic algebra member, but the 
result is very complicated. The (space and time) translation parameters appear 
mixed in a very cumbersome way. A detailed examination of the Galilei case 
shows the reason for that. There, direct exponentiation is feasible, and the 
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study of the order-by-order effects of one transformation on the other shows 
how, at each order, the parameters of one transformation are modified by the 
other transformations. The result is not interesting, as the usual parametriza- 
tions are much simpler. Recall that there are two possible simple parametriza- 
tions for semidirect products like the Euclidean and the Poincar6 groups. 
This is due to the fact that a general transformation is the product of a rotation 
(in 3-space or in spacetime, respectively) by a translation (idem), and that 
this product can be chosen to be done in the inverse order, a translation by 
a rotation. An inhomogeneous Lorentz transformation P = (L,a) can be given 
either by x' = L (x + a) or by x' = Lx + a. In the first case translations are 
performed first and homogeneous Lorentz transformations will act also on 
them. The latter is the more usual parametrization, , ,1,2.03 al) 

Alo All AI2 At3 al 

g(to, g ,a )  = [A2o A21 A22 A23 a2 

kA030 A31 A32 A33 O O 0 

(6.13) 

where A(to, g) indicates the matrix (5.17). We can obtain it from the exponenti- 
ated algebra member, but a fairly involved redefinition of the parameters is 
necessary. The idea will be shown in case of the Galilei group, which is, in 
this particular aspect, simpler. 

7. T H E  G A L I L E I  G R O U P  

The application of the method of matrix functions is, for the Galilei 
group, far more complicated: the matrix representing the algebra member 
has coincident eigenvalues. With the rotation angles collected as above in 
the vector to = (to1, s 2 ,(03), velocity v, space translation parameters a = 
(al, a2, a3) and time translation parameter ao, the genetic member of the 
Galilei algebra is ( 000a ) 

--V I 0 --0) 3 (0 2 a~ 
A = -v2  ~03 0 -tJOl a2 (7.1) 

3 -(o2 to~ 0 
0 0 0 

Notice det A = 0, trA = 0, from which we expect qo5 = 0 and q~ = O. The 
characteristic polynomial will be det[hl - A] = h3(h 2 + to2), SO that the 
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whole list of expected invariants is q~o = 1; qo l 
q~4 = 0; q~5 = 0. The secular equation 

= 0; q)2 = (o2; qo3 = 0; 

)k3(h 2 + (0 2) = 0 (7.2) 

has the roots h I = )k 2 = h 3 = 0; h 4 = +ion, and h5 = -ir There is only 
one invariant, the same to 2 of the rotation subgroup. The Cayley-Hamilton 
theorem gives here very simple expressions for the higher powers, A 5 = 
-to2A 3, etc, so that it is actually very easy to get the generic group element 
G (to, v, a) = exp[A] by direct exponentiation. We shall, however, use this case 
to illustrate the general method, taking into the account the triple eigenvalue 
degeneracy. The expression (3.10) takes the form 

F!A) F(hl)  F'(ht) F"(hl)  F(h4) F(hs) 
1 0 0 1 1 

0 1 0 h 4 k 5 
A 0 0 2 x~ x~ 
a 3 0 0 0 X~ X] 
a 4 0 0 0 k~ k~ 

= 0 (7.3) 

Putting in the values of  interest for us, it becomes 

le'a '1'o' O1 O0 e'io, e:li  
A 0 0 2 __~2 __~2 I A 3 0 0 0 - i m  3 im 3 
A 4 0 0 0 ~ 4  ~ 4  I 

= 0 (7.4) 

Taking the coefficients in the expansion along the first row, we find the 
operators taking the places of would-be projectors: 

A 4 ( a~2 ) a 2 ( A ~ )  
Z l o = l - - - - "  Zll = A  I +  ; Z12= I +  

~t) 4' T 

A :A ) A (A ) 
z5 = ~-j~ - i  

Z4 and Z5 are real projectors, idempotents and annihilating each other. But 
Zlo, Zll, and Zl2 are not. They satisfy the relations ZaZlo = O, ZsZlo = O, 
Z210 = Zlo, and Zlo + Z4 + Z5 = / .  But they fail to satisfy the other necessary 
relations to be projectors. Thus, for example, Z~oZu = Zll, Z~oZl2 = Z12, 
ZllZl2 = 0, Z22 = 0, etc. 
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Expanding the formal determinant along the first column, we obtain 

A 2 
(A + c o s ( o _  1 + ~ ( ( 0 -  sin (0) (7.5) e a =  I + . 4  + - ~ - +  ~(0/~ 2 

In order to display the powers of  A, it will be convenient to define, besides 
the unit u = m/Iml, the 3-vectors q = m • v; p = to x a. We shall also 
use, for the vectors parallel and transversal to u, the notations a II = (a �9 u)a, 
01 = (v �9 u)u and a I = a - (a �9 u)u, v • = v - (v �9 u)u, respectively. Then, 
always labeling "0" the first row and column, we have, for a, b = 0, 1, 2, 
3 ,4 ,  

_iq 0 0 0 0 
- - q l  __(02 - -  (02 (01(02 (01(03 Pl -- aoVi l  

A 2 = - q 2  (01(02 __(02 __ (02 (02(03 P2 -- aOV21 I 

3 (01(03 (02(03 __(02_ (02 P 3 - - a O v 3 ,  

0 0 0 o / 

We see that trA 2 = _ 2(02, coherent with qo2 = 1o 2. We find next 

( o o o o o ) 
v I 0 (03 -(02 - a  ~ - (ao/(02)ql 

A 3 = (02 i ~  --(03 0 (01 - a ~  - (ao/(02)q2 

I V ~  102 --(01 0 --a~--(ao/(02)q3 
\o 0 0 0 0 

(7.6) 

(7.7) 

0 0 0 O)  
q i  (02 __ (01 --0')102 --(OIO3 aov i  L --  P l  

A 4 = (02 q2 - (01(02  (02 _ (02 _(021.03 a0v2- - P2 

--(01(03 __t02(03 (02 _ (032 aov~- - P3 
0 0 0 0 

(7.8) 

We find the expected results trA 3 = 0 and trA 4 = 2(04, consistent with 
q~4 = 0. It is convenient, both to perform the calculations and to exhibit the 
resulting large matrices, to display the matrix elements in the forms 

Aab = ~ao~b4ao + ~ai[~b4ai -- ~bOVi -- ~bj~ijk(0k] 

A2b = --~ai[~b4(aOVi - - P i )  W ~bOqi W ~bj(~ij(02 -- (0i(0j)] 

t L~ 
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A4b = Bai to4 Bb4 (02 "1- \ - " - ~ ] i  

The Galilei group element comes out then as 

[eA]ab = 8a08b0 + 8a4864 + ~aOSb4aO + 8aiSbjRq 

+8a,{  [8b4 a l ' - ~ l a o v l / / + a ~ s i n t ~ 2 1 5 1 7 6  to 

[ : ]  a0,  ] +aoto(v• 1 si o. + ~ ( c o s t o -  1) 

}  79> 
where R 0 are the rotation group entries, 

R O = 8 0 - eijkUkSin tO + (UiU j -- g,~)(l - cos to) 

Both the translation sector and the Galilean boosts are very complicated. 
The relation with the usual parametrization is seen if we redefine new parame- 
ters as a" = (eg) i4  and v ~ = - (ea)i4. Only then will the Galilei group ele- 
ment take the usual form 

I 0 0 0 ao/  

--Vl RII g12 RI3 al 
G(to, v , a ) = / - v ~  R21 R22 R23 a~ / (7.10) 

/o v~ ~"0 ~'0 ~''0 ~) 
The effect of exponentiation is analogous to what we have found in the 
Poincar6 case: the translation and velocity parameters we started with get all 
mixed up. Another way to obtain the expressions for the Galilei group is by 
the InSnii-Wigner contraction (Gilmore, 1974) of the Poincar6 result. This 
would need a previous preparation of the matrices, with some extra factors 
of c and llc. It is simpler to start from another parameterization of the 
Poincar6 algebra element: instead of (6.1), we take A changed by a similarity 
transformation, SAS -l, with S = diag(l, c, c, c, 1): 

f 0 --~1 [c --~2/c --~3/C ao 1 
--C~l 0 --to3 1"02 Cal 

A -- [ -c~2  to3 0 -tol ca2J (7.11) 

/ - ;  ~' -~ ~lo o~  
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This corresponds to dividing the entries (Ok) of A by c and multiplying the 
entries (k0) by c. All the powers of A and the exponential itself will acquire 
the same factors in the corresponding entries. The result for the Galilei group 
comes by taking the limit c ---> ~, though, as usual in the contraction procedure, 
the translation parameters must absorb a factor c in the limit. 

8. FINAL COMMENTS 

To arrive at the exponentials, we could use directly equations (3.3) and 
(3.5) and ignore the treatment involving the characteristic polynomial and 
symmetric functions, leading to closed expressions for the projectors. That 
discussion provides, however, a deeper insight into the whole subject, in 
particular showing how the generalized boost and rotation angles are invariant. 
The method requires the knowledge of the roots of the characteristic polyno- 
mial. The approach also throws a bridge toward the tantalizing recent results 
on the relationship between invariant polynomials and von Neumann algebras 
(Jones, 1991). We have taken as granted that functions of matrices, as long 
as they can be defined, are completely determined by their spectra. This is 
justified in a much more general context. Matrix algebras are very particular 
kinds of yon Neumann algebras and it is a very strong result of the theory 
of Banach algebras (Kirillov, 1974; Bratelli and Robinson, 1979) that func- 
tions on such spaces, as long as they are defined, are indeed fixed by the 
spectra. 
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Appendix. SYMMETRIC FUNCTIONS 

A symmetric function (Littlewood, 1950; Comtet, 1974; MacDonald, 
1979) in N variables xl, x2, x3 . . . . .  XN is a polynomial F(x~, x2, x3 . . . . .  XN) 
which is invariant under any permutation of the Xk. Their main properties are 
listed in here. The variables may be called "letters" and we shall indicate 
them collectively by x. This set x = {Xl, x2, x3 . . . . .  XN} is called, naturally 
enough, the "alphabet" and a monomial is a "word." A symmetric function 
in N variables F(xb  x2, x3 . . . . .  XN) = F(x) can be written as sum of words, 

F(x) = ~ XTll x72x733 ... xT; (A.1) 
{ n l , n 2 , n 3  . . . .  } , { i l , i 2 , i 3  . . . . .  iN} 
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Only two kinds of such functions will interest us: 
(i) The j th  elementary symmetric function Oy, the sum of all distinct 

words with j distinct letters: 

O'j[X] = ~(N)xIX 2 . . .  Xj (A.2) 

As examples, we have 

O'I[X ] = X 1 "4- X 2 q'- X 3 "4" "'" "4- X N 

O2[X ] = XIX 2 + X lX  3 -'[- "'" "~ XIX N "-J- "'" + X2X 3 -{- X23~ 4 -Jr- "'" -J- "'" -'1- XN_IX  N 

ON[X ] ~-- XIX2X3 . . .  X N - I X N  

When the xj are the eigenvalues of an N •  matrix A, clearly ON[X] = det A. 
(ii) The kth power-sum symmetric function 

N 
Sk[X] = ~ X k = (XO k + (X2) k + (X3) k + "'" + (XN) k (A.3) 

j = l  

When the xj are the eigenvalues of A, sk[x] is clearly the trace of A k. These 
symmetric functions have the generating functions 

N N 
P ( [ X ] ,  t) ---- ~ O j [ X ] t  j = I-[ (1 "4- Xj t )  ( A . 4 )  

j=0 j= l  

and 
N N 

~([x], t) = ~ sj[x]t j-1 = I-[ xj(1 - xjt) - l  (A.5) 
j= l  j=l 

with o'0 = 1 by convention. The so-called fundamental theorem of the symmet- 
ric functions says that the Ok are algebraically independent. This means that, 
up to a constant, and for N ---) oo, a general formal series f ( t )  can be seen as 
the generating function P([x], t) with a convenient choice of the alphabet x. 
There are two relationships (offsprings of the obvious relation ~([x], t) = 
- (d/dO In P([x], - t), inverse to each other, between the functions above: 

O'j[X] = 1 ~ Bjm { ( _  )k_ l ( k _ 1)! Sk[X]} (A.6) 
J: m=0 

(__)n--1 
Sn[X] - -  (n  --~ ~ !  m=0 ~ ( - - ) m - l ( m  --  1)! B ~ { k ! ~ k [ X ] }  ( A . 7 )  

Comparing (A.6) with (2.10), we see that the invariants q~j are (up to eventual 
signs) nothing more than symmetric functions of the eigenvalue alphabet h - 
Sp A = {ht, h2, h3 . . . . .  hN} of the generic Lie algebra member: 

toj[A ] = (-)Jo'j[)k] (A.8) 
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With (A.7), we have, so to say, completed a circle: the sn[x] are just the 
original powers of traces. It is interesting to consider simultaneously two 
related alphabets. Take x = {Xl, x2, x3 . . . . .  XN} as above and call its "recipro- 

* = - l/xj. cal" the alphabet x* = {x*, x~ x~ . . . . .  x*}, where each x j  
Notice that x** = xk. The irk of these alphabets are related by 

(--)J(TN_j[X ] = ITN[X](]rj[X* ] (A.9) 

The various forms of a general polynomial of roots x~, x2, x 3 . . . . .  x N can be 
summed up in 

N N N 
P ( t )  = ~ bN_jt  j = (--)N0rN[X] ~ tYj[X*]t j ---- ~ ( - - )J f f j [x] t  N-j 

j=0 j=0 j=0  

N N 
(--)N-JlYN-j[x]tJ -~ (--)No'N[X] I-I  (1 -1- X~'t) 

j=O j = l  

N 
(--)N(rN[X] 1-[ (1 - t/xj) 

j=l 

N N 
[-I (t - xj) = P(0)  V~ (1 - t/x/) (A.10) 

j = l  j = l  

the latter being Weierstrass' expression for a polynomial in terms of  its zeros. 
In the main text we make a particular use of the relation 

N N 

1-[ (xj - t) = ~YN[X] ~ ~j[X*]t  j (A.11) 
j = l  j=O 

In the above expressions, the highest order coefficient is b0 = 1 and the 
independent term is bN = P(0)  = (--)NCrN[X ]. The general Vieta relation 
between the coefficients and the roots of a polynomial comes out immediately: 

b, = (--)rCrr[X] - (_ ) r  r! B r m { ( - ) k - I ( k -  1)!sk[x]} 
m=O 

(A.12) 

We are of course concerned here with the classical case of  commuting 
alphabets. Recent research on quantum groups and related symmetric func- 
tions of noncommutative variables (Gelfand et  al., 1994; Gelfand and Ketakh, 
1995) has called attention to the interest of having closed forms like those 
above, even for the classical case. Let now %i[x] be the sum of all j-products 
of the alphabet x, but excluding the letter xi. For example, r = IIkN~i Xk. 
We put by convention r = 1 and find that 
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k k 
trki[X l = ~ (--)PxPCrk_p[X] = ~ (--xi)k-jcrj[xl (A.13)  

p=0 j=0 

In the absence of the ith letter, (A.11) becomes 

N N N k 
~ I  (Xj - -  t )  = O'Ni[X ] 2 (?ki[X*]tk ~- OrNi[X] 2 2 (--xi)k-YtYj[X*] tk 

j= l ; j~ i  k=O k=O j=0 

Using (A.9), we obtain 

N O-Ni [X ] N k 
1-[ (xj - t) = ~ ~ ~ (--xi)kcrN_j[X]t  k (A.14) 

j=l;j:/:i O'N[X] k=0 j=0 

The projector Zi for a matrix A with eigenvalues forming the alphabet k = 
{hi, k2 . . . . .  hN} can then be written as the ratio of two such polynomials, 
with variable t = A and t = hi." 

N kk -- A 
Zi[A] = [-[ 

k=n,k~i hk hi 

N 
lYki[k*lA k 

k=0 
N 

Crni[h*lh7 
n=0 

N k 
~, h~-k(--)J(rN-j[MA k 

_ k=0 j=O 

• ~ (-hi)J(]rN-j[h] 
n=0 j=0 

N k 

_ k=0 j=0 
N 

n=0 j=0 

k 
N ~ h~:-kq~N-J[ A] 

= 2  j=O Ak 

k=0 ~ hjq~N_j[A] 
n=0 j=0 

(A.15) 
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